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Abstract

In this paper, a practical analytical method for the free vibration analysis of a simply supported rectangular plate with

unidirectional, arbitrary thickness variation is proposed. First, the plate is divided into a number of regions of which the

values of thickness are assumed to be constant and are given by the known thickness function of the plate. The close-form

frequency function that yields the eigenvalues of the plate is extracted by considering the condition of continuity in

displacement and slope between the regions and by considering the simply supported boundary condition of the plate. It is

shown by several case studies that the proposed method has good convergence characteristics and yields accurate

eigenvalues and mode shapes, compared with other analytical methods including FEM (ANSYS).

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Many investigators have, over the years, studied the free vibration problems of non-homogeneous plates
with simply supported edges, which have a theoretical analogy to similarly shaped fixed membranes. The
author has also researched various analytical methods to solve the eigenvalue problems of non-homogeneous
plates [1–3].

Sakata and Pulmano [4,5] have calculated eigenvalues of rectangular plates with linearly varying thickness
using the double Fourier-series expansion method and the finite strip method. Also, Appl [6] studied an
analytical method for calculating the fundamental frequencies of simply supported rectangular plates with
linearly varying thickness. Chehil [7] dealt with the buckling problem of rectangular plates with general
thickness variation.

Recently, the approximate fundamental natural frequencies of composite rectangular membranes have been
obtained by Cortinez using classical and optimized Kantrovitch methods [8]. Liew studied symmetric and
unsymmetric trapezoidal plates having unidirectional thickness variation [9,10]. Singh [11] has investigated the
transverse vibrations of a rectangular plate of bidirectionally, linearly varying thickness. In his work, the first
three eigenvalues of plates with different combinations of elementary boundary condition at four edges were
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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presented and compared with those by Kobayashi [12]. The fundamental frequencies of non-homogeneous
simply supported plates (or fixed membranes) of various dimensions were calculated by various methods
[13–16].

Furthermore, the free vibrations of circular, annular composite membranes have been investigated; Laura
dealt with a doubly connected annular membrane [17]. Rossit calculated antisymmetric modes of composite
annular membranes using the general formulation of the problem for the case of m-discontinuous variations in
surface density [18]. Buchanan has verified the results of previous investigators on circular, annular
membranes with variable density using the special finite element formulation [19]. Jabareen obtained exact
solutions for both the axisymmetric and antisymmetric modes of circular and annular membranes using a
power-series solution [20], and Gottlieb found exact solutions for some annular membranes with special
density variation in the radial direction [21].

As seen in the above investigation on previous papers, many papers have dealt with the vibration problems
of non-homogeneous rectangular plates or membranes because rectangular configuration has many
applications in practical use. In the paper, the free vibration problems of simply supported rectangular
plates with unidirectionally, arbitrarily varying thickness are solved using the so-called transfer matrix
method. For this, the procedure that the plate of interest is divided into N regions (or elements) is required.
The proposed method gives a close-form frequency function extracted by means of assembling the transfer
matrices that have information on the condition of continuity in displacement and slope between discretized
elements. In case studies, the eigenvalues and mode shapes of the plates of interest in the paper are presented,
and the validity and accuracy of the method are shown by comparing the present results to the eigenvalues
given from other analytical methods and FEM (ANSYS).

2. Theoretical formulation

2.1. General theory

The equation of motion for the free flexural vibration of a thin plate is written as

Dr4wþ rs

q2w
qt2
¼ 0, (1)

where w ¼ w(r, t) is the transverse deflection at position vector r, rs the surface density, and D the
flexural rigidity expressed as D ¼ Eh3/12(1–n2) in terms of Young’s modulus E, Poisson ratio n, and the plate
thickness h. Assuming a harmonic motion w(r, t) ¼W(r)ejot in which o denotes the circular frequency, Eq. (1)
leads to

r4W � L4W ¼ 0; L ¼ ðrso
2=DÞ1=4. (2, 3)

There exists an analogy between the vibration of polygonal plates with the simply supported boundary
condition and similarly shaped membranes with fixed edges [22,23]. Since a solution of Eq. (2) for a simply
supported polygonal plate can be obtained by multiplying a solution of a similarly shaped membrane with
fixed edges by a constant [22,23], Eq. (2) in the paper dealing with simply supported rectangular plates can be
reduced to the membrane equation

r2W þ ~L
2
W ¼ 0. (4)

In Eq. (4), ~L is related to L by

L ¼ ~L
ffiffiffiffiffiffiffiffi
a=b

p
, (5)

where a and b denote the width and height of the plate, respectively.
To deal with the plate whose thickness is varying in the x direction as shown in Fig. 1 (see AA0 section), ~L is

rewritten as

~L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l=ðhðxÞ=h0Þ

p
; l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12ð1� n2Þro2=Eh2

0

q
, (6, 7)
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Fig. 1. Discretization of a rectangular plate with arbitrarily varying thickness h(x); the plate is divided into N regions (e1,e2,y,eN) with

equal space a/N so that xi ¼ ia/N.
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where h(x) represents the thickness function as indicated in Fig. 1 (see AA0 section), h0 denotes the thickness of
the plate at x ¼ 0 (i.e., h0 ¼ h(0)), r is the mass per unit volume (i.e., r ¼ rs/h(x)), and l is defined as the
frequency parameter.

To use the separation of variables method, W(x, y) of Eq. (4) is assumed as

W ðx; yÞ ¼ f ðxÞgðyÞ. (8)

If Eq. (8) is substituted into Eq. (4) and the simply supported boundary condition at y ¼ 0 and b,
W(x, 0) ¼W(x, b) ¼ 0, is considered, one can obtain

W ðx; yÞ ¼ f ðmÞðxÞgðmÞðyÞ; m ¼ 1; 2; . . . , (9)

where

f ðmÞðxÞ ¼ ðA sin kxmxþ B cos kxmxÞ, (10)

gðmÞðyÞ ¼ sin mpy=b, (11)

kxm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l=ðhðxÞ=h0Þ � ðmp=bÞ2

q
. (12)
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2.2. Transfer matrices between discretized elements

As shown in Fig. 1, the plate is first discretized to N elements, e1, e2,y,eN with equal space a/N. The
thickness of the ith element is assumed to be constant and is approximated as h(xi) by substituting xi ¼ ia/N
into the thickness function h(x). Using Eq. (9), the transverse deflection Wi(x, y) of the ith element ei shown in
Fig. 2 is assumed as

W iðx; yÞ ¼ f
ðmÞ
i ðxÞg

ðmÞðyÞ; xi�1oxoxi, (13)

where

f
ðmÞ
i ðxÞ ¼ Ai sin kðiÞxmðxi � xÞ þ Bi cos kðiÞxmðxi � xÞ, (14)

kðiÞxm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l=ðhðxiÞ=h0Þ � ðmp=bÞ2

q
and xi ¼ ai/N (see Fig. 2).

In order to consider the condition of continuity in displacement and slope at the interface x ¼ xi, the
transverse deflection in element ei+1 adjacent to element ei as shown in Fig. 2 is defined by using Eq. (13).
Then, the transverse deflection in element ei+1 can be expressed as

W iþ1ðx; yÞ ¼ f
ðmÞ
iþ1ðxÞg

ðmÞðyÞ; xioxoxiþ1, (15)

where

f
ðmÞ
iþ1ðxÞ ¼ Aiþ1 sin kðiþ1Þxm ðxiþ1 � xÞ þ Biþ1 cos kðiþ1Þxm ðxiþ1 � xÞ, (16)

kðiþ1Þxm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l=ðhðxiþ1Þ=h0Þ � ðmp=bÞ2

q
and xiþ1 ¼ aði þ 1Þ=N. Using Eqs. (13) and (15), the condition of

continuity in displacement and slope at x ¼ xi may be written as

f
ðmÞ
i ðxiÞ ¼ f

ðmÞ
iþ1ðxiÞ; df

ðmÞ
i ðxiÞ=dx ¼ df

ðmÞ
iþ1ðxiÞ=dx, (17, 18)

where d/dxi denotes the differential at x ¼ xi. Substituting Eqs. (14) and (16) into Eqs. (17,18) gives a matrix
equation as follows:

Aiþ1

Biþ1

( )
¼ T

ðiþ1Þ
ðiÞ

Ai

Bi

( )
, (19)

T
ðiþ1Þ
ðiÞ ¼ ð1=kðiþ1Þxm Þ

kðiÞxm cosðkðiþ1Þxm a=NÞ sinðkðiþ1Þxm a=NÞ

�kðiÞxm sinðkðiþ1Þxm a=NÞ cosðkðiþ1Þxm a=NÞ

" #
, (20)
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where T
ðiþ1Þ
ðiÞ is the square matrix of order 2 and is called the transfer matrix between the two elements, ei

and ei+1.
If considering Eq. (19) for all interfaces, the following N matrix equations are obtained:

A2

B2

( )
¼ T

ð2Þ
ð1Þ

A1

B1

( )
for x ¼ x1, (21)

A3

B3

( )
¼ T

ð3Þ
ð2Þ

A2

B2

( )
for x ¼ x2, (22)

AN

BN

( )
¼ T

ðNÞ
ðN�1Þ

AN�1

BN�1

( )
for x ¼ xN�1. (23)

If applying the chain rule to the above N matrix equations, unknown coefficient vectors

A2

B2

( )
;

A3

B3

( )
; . . . ;

AN�1

BN�1

( )

can be removed. As a result, one can obtain

AN

BN

( )
¼ T

ðNÞ
ð1Þ

A1

B1

( )
, (24)

where

T
ðNÞ
ð1Þ ¼ T

ðNÞ
ðN�1ÞT

ðN�1Þ
ðN�2Þ � � �T

ð3Þ
ð2ÞT
ð2Þ
ð1Þ. (25)

In Eq. (24), T
ðNÞ
ð1Þ is a square matrix of order 2 and is called the transfer matrix between the first elements e1

and the last element eN.
2.3. Extraction of frequency function

2.3.1. Consideration of the simply supported boundary condition

The simply supported boundary conditions at x ¼ 0 and a of the plate shown in Fig. 1 can be expressed as,
respectively,

W ð0; yÞ ¼ 0; W ða; yÞ ¼ 0. (26, 27)

Applying Eq. (13) for i ¼ 1 and N to Eqs. (26, 27), respectively, leads the simply supported boundary
conditions to

W 1ð0; yÞ ¼ f
ðmÞ
1 ð0Þg

ðmÞðyÞ ¼ 0, (28)

W N ða; yÞ ¼ f
ðmÞ
N ðaÞg

ðmÞðyÞ ¼ 0. (29)

The above boundary conditions can be simplified as, respectively,

f
ðmÞ
1 ð0Þ ¼ 0; f

ðmÞ
N ðaÞ ¼ 0. (30, 31)

By substituting Eq. (14) into Eqs. (30, 31), one can obtain two equations as follows:

A1 sinðkð1Þxma=NÞ þ B1 cosðkð1Þxma=NÞ ¼ 0; BN ¼ 0. (32, 33)
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2.3.2. Extraction of the system matrix

Eqs. (24) and (33) lead to

AN

0

� �
¼ T

ðNÞ
ð1Þ

A1

B1

( )
, (34)

which can be expressed as two equations:

T
ðNÞ
ð1Þ ð1; 1ÞA1 þ T

ðNÞ
ð1Þ ð1; 2ÞB1 ¼ AN , (35)

T
ðNÞ
ð1Þ ð2; 1ÞA1 þ T

ðNÞ
ð1Þ ð2; 2ÞB1 ¼ 0, (36)

where T
ðNÞ
ð1Þ ðr; sÞ denotes an element at the rth row and sth column in T

ðNÞ
ð1Þ .

In order to extract the system matrix of which the determinant gives eigenvalues, Eqs. (32) and (36) are
formed in a single matrix equation:

SM
A1

B1

( )
¼

0

0

� �
, (37)

where SM is called the system matrix that is a function of the frequency parameter l given by Eq. (7) and

SMðlÞ ¼
sin ðkð1Þxma=nÞ cos ðkð1Þxma=nÞ

T
ðNÞ
ð1Þ ð2; 1Þ T

ðNÞ
ð1Þ ð2; 2Þ

2
4

3
5. (38)

Finally, the eigenvalues of the plate of interest can be extracted from the values of l at which the
determinant of the system matrix is equal to zero, i.e.,

det½SMðlÞ� ¼ 0 (39)

in which det[SM(l)] is called the frequency function in the paper. From Eq. (39), eigenvalues lðmÞj ’s for
j ¼ 1,2,y and m ¼ 1,2,y can be calculated.

Note that A1 ¼ B1 ¼ 0 if the determinant of the system matrix is not equal to zero and also Ai ¼ Bi ¼ 0 for
i ¼ 2,3,y,N by Eqs. (21)–(23). It may be said from this fact that the trivial solution (W(x, y) ¼ 0) is obtained
by Eq. (37) if the determinant of the system matrix is not equal to zero.
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2.3.3. Extraction of mode shapes

On the other hand, the mode shapes of the plate can be plotted by using Eqs. (13), (19), (37). For this,
eigenvalue lðmÞj is substituted into Eq. (37) and a value of B1 for A1 ¼ 1 is calculated. Then, the values of Ai’s
and Bi’s for i ¼ 2,3,y,N can be successively calculated with Eq. (19). Finally, the mode shape for eigenvalue
lðmÞj can be plotted by substituting values of Ai’s and Bi’s for i ¼ 2,3,y,N into Eq. (13).
3. Numerical work and discussion

3.1. Plate with linearly varying thickness: h(x) ¼ h0(1+a(x/a))

To show the validity and accuracy of the present method, a simply supported rectangular plate with
dimensions 1.0m� 0.5m is first considered. The analysis results are compared with the results by other
methods. In the current case, the thickness function h(x) is expressed as h(x) ¼ h0(1+a(x/a)), where
h0 ¼ 0.001m and a ¼ 0.6. For m ¼ 1 and 2, the functional values of the frequency function det[SM(l)] are
Table 1

Eigenvalues of the plate with h(x) ¼ h0(1+a(x/a)) where h0 ¼ 0.001m and a ¼ 0.6, obtained by the proposed method, other analytical

methods, and FEM (ANSYS); parenthesized values represent errors (%) compared with the FEM results for Nele ¼ 800 and N/P denotes

‘not presented’

Eigenvalues Proposed method Ref. [11] Ref. [12] FEM (ANSYS)

N ¼ 10 N ¼ 20 N ¼ 30 N ¼ 40 Nele ¼ 200 Nele ¼ 800

lð1Þ1 64.452 (2.0) 63.706 (0.8) 63.454 (0.4) 63.322 (0.19) 63.488 (0.45) 63.488 (0.45) 63.138 (0.1) 63.203

lð1Þ2 104.02 (2.2) 102.85 (1.0) 102.46 (0.7) 101.98 (0.19) 102.01 (0.22) 101.99 (0.20) 101.58 (0.2) 101.79

lð1Þ3 168.75 (2.3) 166.87 (1.2) 166.22 (0.8) 165.21 (0.17) 166.96 (1.23) 165.24 (0.19) 164.44 (0.3) 164.93

lð2Þ1 213.91 (2.4) 211.32 (1.2) 210.50 (0.8) 209.42 (0.25) _N/P _N/P 208.44 (0.2) 208.89

lð1Þ4 259.39 (2.4) 256.44 (1.2) 255.43 (0.8) 254.17 (0.32) _N/P _N/P 252.42 (0.4) 253.35

lð2Þ2 261.43 (2.3) 258.47 (1.2) 257.45 (0.8) 256.38 (0.35) _N/P _N/P 254.56 (0.4) 255.49

Fig. 4. First six mode shapes of the plate whose thickness function is h(x) ¼ h0(1+a(x/a)), where h0 ¼ 0.001m and a ¼ 0.6.
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Table 2

Eigenvalues of the plate with h(x) ¼ h0(1+a(x/a)2) where h0 ¼ 0.001m and a ¼ 0.6, obtained by the proposed method and FEM

(ANSYS); parenthesized values represent errors (%) compared with the FEM results for Nele ¼ 800

Eigenvalues Proposed method FEM (ANSYS)

N ¼ 10 N ¼ 20 N ¼ 30 Nele ¼ 200 Nele ¼ 800

lð1Þ1 57.859 57.169 56.930 (0.3) 56.725 56.778

lð1Þ2 95.335 94.126 93.758 (0.1) 93.685 93.878

lð1Þ3 155.21 153.27 152.73 (0.5) 151.55 152.00

lð2Þ1 191.60 189.57 188.96 (0.0) 188.65 189.03

lð2Þ2 238.67 235.71 234.74 (0.6) 232.52 233.38

lð1Þ4 238.83 235.90 234.93 (0.4) 233.12 233.98

Fig. 6. First six mode shapes of the plate whose thickness function is h(x) ¼ h0(1+a(x/a)2), where h0 ¼ 0.001m and a ¼ 0.6.
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plotted as a function of l in Fig. 3 where the values of l at which the frequency function satisfies zero represent
the eigenvalues of the plate (lð1Þ1 ; l

ð1Þ
2 ; l

ð1Þ
3 ; l

ð2Þ
1 ; l

ð1Þ
4 ; and lð2Þ2 denote the eigenvalues).

In Table 1, the eigenvalues obtained from the present method are compared with those given by other
analytical methods [11,12] and FEM (ANSYS). It may be said that the proposed method in the case of N ¼ 40
gives more accurate results than the two references’ results when the errors of the proposed method for N ¼ 40
are compared with the errors of the references’ results. In addition, it should be noticed in Table 1 that the
proposed method has good convergence characteristics, because the errors decrease as N increases. (Note that
the good convergence feature is one of the most important requirements when new methods are developed for
solving eigenvalue problems.)

On the other hand, the first six modes plotted by the proposed method are shown in Fig. 4, and the mode
shapes and the positions of their nodal lines are in good agreement with the FEM mode shapes, which are
omitted in the paper.
3.2. Plate with quadratic thickness function: h(x) ¼ h0(1+a(x/a)2)

In order to show the validity of the proposed method for plates with more general thickness variation, a
rectangular plate with the same dimensions as in Section 3.1 is considered with the thickness function
h(x) ¼ h0(1+a(x/a)2) for two cases, a ¼ 0.6 and 1.0.
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Table 3

Eigenvalues of the plate with h(x) ¼ h0(1+a(x/a)2) where h0 ¼ 0.001m and a ¼ 1.0, obtained by the proposed method and FEM

(ANSYS); parenthesized values represent errors (%) compared with the FEM results for Nele ¼ 800

Eigenvalues Proposed method FEM (ANSYS)

N ¼ 10 N ¼ 20 N ¼ 30 Nele ¼ 200 Nele ¼ 800

lð1Þ1 62.495 61.405 61.058 (0.6) 60.617 60.674

lð1Þ2 105.16 103.23 102.66 (0.5) 102.94 103.15

lð1Þ3 171.29 168.26 167.28 (0.5) 165.99 166.48

lð2Þ1 202.28 199.27 198.29 (0.2) 198.31 198.75

lð2Þ2 261.94 257.25 255.73 (0.3) 254.09 255.06

lð1Þ4 263.41 258.67 257.25 (0.8) 254.17 255.09



ARTICLE IN PRESS
S.W. Kang, S.-H. Kim / Journal of Sound and Vibration 312 (2008) 551–562560
Fig. 5 shows frequency function curves where lð1Þ1 ; l
ð1Þ
2 ; l

ð1Þ
3 ; l

ð2Þ
1 ; l

ð2Þ
2 ; and lð1Þ4 represent the eigenvalues

of the plate in the case of a ¼ 0.6. The eigenvalues are compared with the FEM results in Table 2
where it is confirmed that the proposed method for N ¼ 30 yields accurate results within 0.6% error
compared with the FEM results for Nele ¼ 800. Fig. 6 shows the first six mode shapes that agree well
with the FEM mode shapes, which are omitted in the paper. Interestingly, it may be noticed from the
comparison of Fig. 6 with Fig. 4 that the sequence of the fifth and sixth modes is changed. The reason
may be that an equivalent stiffness in the x direction is increased in the case of the quadratic thickness
function.

Fig. 7 shows frequency function curves for a ¼ 1.0. Eigenvalues obtained from the frequency function
curves are summarized in Table 3 where the results by the proposed method are compared with the FEM
results. Note that the results (N ¼ 30) by the proposed method are within 0.8% error compared with the FEM
results for Nele ¼ 800.

On the other hand, Fig. 8 shows the first six modes plotted by the proposed method. The mode shapes and
the positions of their nodal lines are in good agreement with the FEM mode shapes, which are omitted in the
paper.
Fig. 8. First six mode shapes of the plate whose thickness function is h(x) ¼ h0(1+a(x/a)2), where h0 ¼ 0.001m and a ¼ 1.0.

Table 4

Eigenvalues of the plate with h(x) ¼ h0(1+a sin px/a) or hðxÞ ¼ h0ð1þ a
ffiffiffiffiffiffiffiffi
x=a

p
Þ, where h0 ¼ 0.001m for a ¼ 0.6, 0.8 and 1.0 (N ¼ 30)

Eigenvalues h(x) ¼ h0(1+a sin px/a) hðxÞ ¼ h0ð1þ a
ffiffiffiffiffiffiffiffi
x=a

p
Þ

a ¼ 0.6 a ¼ 0.8 a ¼ 1.0 a ¼ 0.6 a ¼ 0.8 a ¼ 1.0

lð1Þ1 73.7 81.6 89.3 69.6 76.2 82.7

lð1Þ2 109.6 119.4 129.0 111.1 121.6 132.1

lð1Þ3 176.5 191.9 207.1 180.0 197.0 213.8

lð2Þ1 247.4 271.5 294.3 233.6 254.0 274.0

lð2Þ2 270.3 293.5 316.3 276.6 302.5 328.2

lð1Þ4 272.3 295.8 319.0 278.7 305.6 332.4
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3.3. Plate with other arbitaty thickness functions

For further research of researchers with interest in the proposed method, the eigenvalues of plates with
arbitrary thickness functions h(x) ¼ h0(1+a sin px/a) and hðxÞ ¼ h0ð1þ a

ffiffiffiffiffiffiffiffi
x=a

p
Þ are summarized in Table 4.

The eigenvalues have been obtained with N ¼ 30 for a ¼ 0.6, 0.8, and 1.0. It has been revealed that the results
in Table 4 are within 0.7% error compared with the FEM results for Nele ¼ 800 although the FEM results are
omitted in the paper.

4. Conclusions

An effective, analytical method for the free vibration analysis of a simply supported rectangular plate with
arbitrarily varying thickness was proposed in this paper. It was revealed that the method gives the close-form
frequency function and that, as a result, it shows an excellent convergence feature and yields accurate
eigenvalues and mode shapes, when compared with other methods including FEM (ANSYS). It is expected
that the application region of the method comes up to the free vibration analyses of non-homogeneous
rectangular plates with various combinations of the elementary boundary conditions (simply supported,
clamped, and free boundary conditions).
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